Моделирование рынков жилой недвижимости крупнейших городов России
DOI:
https://doi.org/10.17059/ekon.reg.2022-2-22Ключевые слова:
mass appraisal, market value, real estate market, residential property, taxation, forecasting, construction business, neural network, scenario forecasting, price zonesАннотация
Существующие математические модели массовой оценки и прогнозирования рыночной стоимости жилых объектов обладают рядом недостатков: разработанные для какого-либо одного региона модели не годятся для других регионов. Все они быстро устаревают и требуют постоянной актуализации, поскольку не учитывают постоянно меняющуюся экономическую обстановку. Они не пригодны для оптимизации строительного бизнеса. Целью исследования является создание системы оценки недвижимости городов России, применимой к любым ее регионам, причем независимо от постоянно меняющейся экономической ситуации. Эта цель была достигнута благодаря тому, что в качестве входных параметров нейронной сети помимо строительно-эксплуатационных факторов были учтены географические параметры, фактор времени, а также ряд параметров, характеризующих экономическую ситуацию в конкретных регионах, в России и в мире. Статистические данные о рынках недвижимости РФ, необходимые для обучения нейронной сети, были собраны за длительный период с 2006 г. по 2020 г., что обусловило ее динамические свойства. В качестве примера применения системы были проведены виртуальные компьютерные эксперименты, которые, например, показали, что в Москве самую высокую удельную стоимость квадратного метра имеют однокомнатные квартиры минимальных размеров — 16 м2. Максимальная стоимость двухкомнатных квартир достигается при их площади 90 м2, трехкомнатных — 100 м2, четырехкомнатных — 110 м2, пятикомнатных — 120 м2. Для условий Екатеринбурга среди двухкомнатных квартир наибольшую стоимость квадратного метра имеют квартиры общей площадью 30 м2, трехкомнатных — 110 м2, четырехкомнатных — 130 м2, пятикомнатных — 150 м2. Таким образом, система может быть использована для оптимизации строительного бизнеса. Она может быть полезна государственным структурам, занимающимся вопросами управления рынком городской недвижимости, вопросами имущественного налогообложения, вопросами повышения эффективности жилищного рынка.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.