Using Computational Linguistics to Analyse Main Research Directions in Economy of Regions

Authors

DOI:

https://doi.org/10.17059/ekon.reg.2022-2-3

Keywords:

topic modelling, machine learning, computational linguistics, text mining, literature review, academic journal, spatial economics, environmental economics, scientometrics, third-party funding

Abstract

Over the past decades, the process of knowledge generation has accelerated, producing a lot of scientific publications, which makes reviewing even a relatively narrow subject area very demanding, if not impossible. However, recent text data mining tools can assist researchers in conducting such analysis in an objective and time-efficient way. We conduct such a literature review on 1307 articles published in the journal Economy of Regions from 2010 to 2021 using advanced topic modelling techniques. This analysis aims to describe the main research areas in the journal over time, the dynamics of their popularity and the relationship with key quantitative indicators. We identified 22 topics ranging from “Agriculture” and “Economic Geography” to “Fiscal Policy” and “Entrepreneurship”. We estimate how popularity of these topics was changing over time and find topics that gained the most popularity from 2010 to 2021 (+17.61 %, “Spatial Economics”) or lost it (-14.58 %, “Economics of Innovation”). The topic of environmental economics collects the largest number of citations per article (3.64, on average), and the topics on monetary policy and poverty are the most popular among manuscripts in English, which is also true for articles written by authors with foreign affiliation. Papers with third-party funding are concentrated the most in “Spatial Economics” (around 11 %), and the least — in “Agriculture”. Our results can help to understand the evolution in scope of research of Economy of Regions and serve researchers to find promising directions for future studies.

Author Biographies

Ivan V. Savin , Ural Federal University

Doctor of Science (Econ.), Professor, Academic Department of Economics; Researcher, Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona; Scopus Author ID: 55539536700; https://orcid.org/0000-0002-9469-0510 (19, Mira St., Ekaterinburg, 620002, Russian Federation; Cerdanyola del Vallès, Barcelona, Spain; e-mail: ivan.savin@uab.cat).

Nikita S. Teplyakov , Ural Federal University

PhD Student, Research Assistant, Scopus Author ID: 57219122917; https://orcid.org/0000-0003-2522-8207 (19, Mira St., Ekaterinburg, 620002, Russian Federation; e-mail: nekit_teplykov@mail.ru).

References

Aggarwal, C. C. (2018). Text Preparation and Similarity Computation. In: Machine Learning for Text (pp. 17–30). New York: Springer.

Ambrosino, A., Cedrini, M., Davis, J., Fioria, S., Guerzoni, M. & Nuccio, M. (2018). What topic modeling could reveal about the evolution of economics. Journal of Economic Methodology, 25(4), 329–348. DOI: 10.1080/1350178X.2018.1529215.

Asmussen, C. B. & Møller, C. (2019). Smart literature review: a practical topic modelling approach to exploratory literature review. Journal of Big Data, 6(1), 1–18. DOI: 10.1186/s40537–019–0255–7.

Baskakova, I. V., Podymova, A. S., Turgel, I. D. & Balandina, M. S. (2020). The Impact of HIV Infection on the Population’s Quality of Life in Regions. Ekonomika regiona [Economy of region], 16(1), 114–126. DOI: 10.17059/2020–1-9. (In Russ.)

Blei, D. M. (2012). Probabilistic Topic Models. Communications of the ACM, 55(4), 77–84. DOI: 10.1145/2133806.2133826.

Callaghan, M. W., Minx, J. C. & Forster, P. M. (2020). A topography of climate change research. Nature Climate Change, 10(2), 118–123. DOI: 10.1038/s41558 019 0684.

De Battisti, F., Ferrara, A. & Salini, S. (2015). A decade of research in statistics: a topic model approach. Scientometrics, 103(2), 413–433. DOI: 10.1007/s11192–015–1554–1.

Devitsyn, I. N. & Savin, I. V. (2020). Research Community Analytic Tool Based on Topic Modeling and Network Analysis. Uspekhi kibernetiki [Russian Journal of Cybernetics], 1(4), 13–21. DOI: 10.51790/2712–9942–2020–1-4–2. (In Russ.)

Drews, S., Savin, I. & van den Bergh, J. (2022). Climate change concern and policy support before and after COVID-19. Ecological Economics, 199, 107507. DOI:10.1016/j.ecolecon.2022.107507.

Fellbaum, C. D. (2005). WordNet and wordnets. In: K. Brown (Ed.), Encyclopedia of Language and Linguistics, Second Edition (pp. 665–670). Oxford: Elsevier.

Griffith, T. & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101, 5228–5235. DOI: 10.1073/PNAS.0307752101.

He, Q., Chen, B., Pei, J., Qiu, B., Mitra, P. & Giles, C. L. (2009). Detecting Topic Evolution in Scientific Literature: How Can Citations Help? In: CIKM ‘09: Proceedings of the 18th ACM conference on Information and knowledge management (pp. 957–966). Hong Kong, China. DOI: 10.1145/1645953.1646076.

Kochetkov, D. M., Vuković, D. B. & Kondyurina, E. A. (2021). Challenges in Developing Urban Marketing Strategies: Evidence from Ekaterinburg. Ekonomika regiona [Economy of regions], 17(4), 1137–1150. DOI: 10.17059/ekon.reg.2021–4-7.

Liu, G., Nzige, J. H. & Li, K. (2019). Trending topics and themes in offsite construction (OSC) research: The application of topic modelling. Construction Innovation, 19(3), 343–366. DOI: 10.1108/CI-03–2018–0013.

Lüdering, J. & Winker, P. (2016). Forward or backward looking? The economic discourse and the observed reality. Jahrbuecher fuer Nationaloekonomie und Statistik [Journal of Economics and Statistics] 236(4), 483–515.

Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., … Adam, S. (2018). Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology. Communication Methods and Measures, 12(2–3), 93–118. DOI: 10.1080/19312458.2018.1430754.

Mimno, D., Wallach, H. M., Talley, E. M., Leenders, M. & McCallum, A. (2011). Optimizing Semantic Coherence in Topic Models. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (pp. 262–272). Edinburgh, Scotland.

Mo, Y., Kontonatsios, G. & Ananiadou, S. (2015). Supporting systematic reviews using LDA based document representations, Systematic Reviews, 4(1), 172. DOI: 10.1186/s13643–015–0117–0.

Moskaleva, O., Pislyakov, V., Sterligov, I., Akoev, M. A. & Shabanova, S. (2018). Russian Index of Science Citation: Overview and review. Scientometrics, 116(1), 449–462. DOI: 10.1007/s11192–018–2758-y.

Murakami, A., Thompson, P., Hunston, S. & Vajn, D. (2017). ‘What is this corpus about?’: using topic modelling to explore a specialised corpus. Corpora, 12(2), 243–277. DOI: 10.3366/cor.2017.0118.

Muštra, V., Perovic, L. M. & Golem, S. (2014). Social attitudes and regional inequalities. Ekonomika regiona [Economy of region], 1, 66–73. DOI: 10.17059/2014–1-5.

Roberts, M. E., Stewart, B. M. & Tingley, D. (2019). STM: An R Package for Structural Topic Models. Journal of Statistical Software, 91(2), 1–40. DOI: 10.18637/jss.v091.i02.

Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., … Rand, D. G. (2014). Structural topic models for open-ended survey responses. American Journal of Political Science, 58(4), 1064–1082. DOI: 10.1111/ajps.12103.

Savin, I. & van den Bergh, J. (2021). Main topics in EIST during its first decade: A computational linguistic analysis. Environmental Innovation and Societal Transition, 41, 10–17. DOI:10.1016/j.eist.2021.06.006.

Savin, I., Chukavina, K. & Pushkarev, A. (2022). Topic-based classification and identification of global trends for startup companies. Small Business Economics. DOI: 10.1007/s11187–022–00609–6.

Savin, I., Drews, S. & van den Bergh, J. (2021). Free associations of citizens and scientists with (green) economic growth: A computational linguistics analysis. Ecological Economics, 180, 106878. DOI: 10.1016/j.ecolecon.2020.106878.

Savin, I., Drews, S., Mestre Andrés, S. & van den Bergh, J. (2020). Public views on carbon taxation and its fairness: A computational linguistics analysis. Climatic Change, 162, 2107–2138. DOI: 10.1007/s10584 020 02842.

Savin, I., Ott, I. & Konop, C. (2021). Tracing the evolution of service robotics: Insights from a topic modeling approach. Technological Forecasting and Social Change, 174, 121280. DOI: 10.1016/j.techfore.2021.121280.

Sharma, V. & Mittal, A. (2021). Revisiting the Dynamics of the Fiscal Deficit and Inflation in India: the Nonlinear Autoregressive Distributed Lag Approach. Ekonomika regiona [Economy of Region], 17(1), 318–328. DOI: 10.17059/EKON.REG.2021–1-24.

Speier, W., Ong, M. K. & Arnold, C. W. (2016). Using phrases and document metadata to improve topic modeling of clinical reports. Journal of Biomedical Informatics, 61, 260–266. DOI: 10.1016/j.jbi.2016.04.005.

Uglanova, I. & Gius, E. (2020). The Order of Things. A Study on Topic Modelling of Literary Texts. In: CHR 2020: Workshop on Computational Humanities Research (pp. 57–76). Amsterdam, The Netherlands.

van den Bergh, J., Castro, J., Drews, S., Exadaktylos, F., Foramitti, J., Klein F., … Savin, I. (2021). Designing an Effective Climate-Policy Mix: Accounting for Instrument Synergy. Climate Policy, 21(6), 745–764. DOI: 10.1080/14693062.2021.1907276.

Voutilainen, A. (2003). Part-of-Speech Tagging. In: R. Mitkov (Ed.), The Oxford handbook of computational linguistics (pp. 219–232). New York: Oxford University Press Inc.

Downloads

Published

30.06.2022

How to Cite

Savin И. В. ., & Nikita S. Teplyakov Н. С. . (2022). Using Computational Linguistics to Analyse Main Research Directions in Economy of Regions. Economy of Regions, 18(2), 338–352. https://doi.org/10.17059/ekon.reg.2022-2-3

Issue

Section

Research articles