Modelling Crop Yield in Agricultural Regions Using Computer Vision Technology

Authors

DOI:

https://doi.org/10.17059/ekon.reg.2022-2-20

Abstract

The article examines new methodologies for modelling crop yield in agricultural regions of Russia based on the use of remote capabilities to get information on the field state. The proposed approach can be applied to develop indicator systems and create methodological platforms and models necessary to obtain more accurate estimates. In comparison with the traditional regression model, this method uses computer vision technology to gather additional data. Statistical hypothesis testing confirmed the significance of satellite photographs of fields for improving the accuracy of crop yield forecasting models. Traditional econometric tools were compared with various neural networks in order to discover the optimal model. The proposed tools were tested using data from 100 agricultural fields located in municipalities of 43 Russian regions, selected in proportion to the volume of crop production in this region. The conducted analysis showed the advantage of the mixed data neural network in comparison with other neural (multilayer perceptron and convolutional neural network) and regression models. In conditions of uncertainty and a large amount of data, the mixed data neural network can help obtain more accurate estimates. Additionally, while environmental factors have different effects on crop yields, they must be considered along with socio-economic characteristics. The use of new models and data types differing from table information can significantly improve the forecasting accuracy and interpretation. The analysis results can be used for examining and monitoring agricultural production in regional municipalities, determining farm resource requirements, as well as for creating sectoral and comprehensive projects and programmes for the development of the agricultural industry.

Author Biography

Marina Yu. Arkhipova , National Research University “Higher School of Economics”

Dr. Sci. (Econ.), Professor; Scopus Author ID: 57191839300; https://orcid.org/0000-0002-9022-7385 (20, Myasnitskaya St., Moscow, 101000, Russian Federation; e-mail: marhipova@hse.ru).

References

Anders, U. & Korn, O. (1999). Model selection in neural networks. Neural networks, 12(2), 309–323. DOI: 10.1016/S0893–6080(98)00117–8.

Anisova, S. N., Sokolova, S. A. & Lebedev, A. T. (1995). Perechen predelno dopustimykh kontsentratsiy i orientirovochno bezopasnykh urovney vozdeystviya vrednykh veshchestv dlya vody rybokhozyaystvennykh vodoemov [List of maximum permissible concentrations and approximately safe impact levels of hazardous substances for water of fishery water bodies]. Moscow: TOO “Medinor”, 220. (In Russ.)

Arkhipova, M. Yu. & Smirnov, A. I. (2020). Current Trends in Crop Yield Forecasting Based on the Use of Econometric Models. Voprosy statistiki, 27(4), 88–101. (In Russ.)

Bajracharya, D. (2011). Econometric Modeling vs Artificial Neural Networks: A Sales Forecasting Comparison. Retrieved from: http://docplayer.net/14695913-Econometric-modeling-vs-artificial-neural.html (Date of access: 19.05.2020).

Basso, F., Bove, E., Dumontet, S., Ferrara, A., Pisante, M., Quaranta, G. & Taberner, M. (2000). Evaluating environmental sensitivity at the basin scale through the use of geographic information systems and remotely sensed data: an example covering the Agri basin (Southern Italy). Catena, 40(1), 19–35. DOI: 10.1016/S0341–8162(99)00062–4.

de la Casa, A., Ovando, G., Bressanini, L., Martinez, J., Diaz, G. & Miranda, C. (2018). Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS journal of photogrammetry and remote sensing, 146, 531–547. DOI: 10.1016/j.isprsjprs.2018.10.018.

Demuth, H. B., Beale, M. H., De Jess, O. & Hagan, M. T. (2014). Neural network design. Martin Hagan. Retrieved from: https://hagan.okstate.edu/NNDesign.pdf.

Dharmadhikari, N. L. (2018). Economic Modeling of Agricultural Production in North Dakota Using Transportation Analysis and Forecasting. Doctoral dissertation. North Dakota State University. Retrieved from: https://clck.ru/3Ragzp

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep learning. MIT Press. Retrieved from: http://www.deeplearningbook.org/ (Date of access: 19.05.2020).

Haghverdi, A., Washington-Allen, R. A. & Leib, B. G. (2018). Prediction of cotton lint yield from phenology of crop indices using artificial neural networks. Computers and Electronics in Agriculture, 152, 186–197. DOI: 10.1016/j.compag.2018.07.021.

Jordanova, N. (2016). Soil magnetism: Applications in pedology, environmental science and agriculture. Academic Press, 466.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. & Tang, P. T. P. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836. Retrieved from: https://arxiv.org/pdf/1609.04836.pdf

Kung, H. Y., Kuo, T. H., Chen, C. H. & Tsai, P. Y. (2016). Accuracy analysis mechanism for agriculture data using the ensemble neural network method. Sustainability, 8(8), 735. DOI: 10.3390/su8080735.

Masters, D. & Luschi, C. (2018). Revisiting small batch training for deep neural networks. Pp. 29–43. arXiv preprint arXiv:1804.07612.

Mkhitaryan, V. S. (2017). Analiz dannykh: uchebnik dlya akademicheskogo bakalavriata [Data Analysis: An Academic Undergraduate Textbook]. Moscow: Urait, 490. (In Russ.)

Molnar C. (2018). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. Retrieved from: https://christophm.github.io/interpretable-ml-book/interpretable-ml.pdf.

Moshiri, S. & Cameron, N. (2000). Neural network versus econometric models in forecasting inflation. Journal of forecasting, 19(3), 201–217. DOI: 10.1002/(SICI)1099–131X(200004)19:33.3.CO;2-W.

Osovskiy, S. (2004). Neyronnye seti dlya obrabotki informatsii [Neural networks for data processing]. Moscow: Finansy i statistika, 343. (In Russ.)

Pantazi, X. E., Moshou, D., Alexandridis, T., Whetton, R. L. & Mouazen, A. M. (2016). Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, 121, 57–65. DOI: 10.1016/j.compag.2015.11.018.

Põldaru, R., Roots, J. & Viira, A. H. (2005). Estimating econometric model of average total milk cost: A support vector machine regression approach. Economics and rural development, 1(1), 23–31.

Ranjan, R., Chandel, A. K., Khot, L. R., Bahlol, H. Y., Zhou, J., Boydston, R. A. & Miklas, P. N. (2019). Irrigated pinto bean crop stress and yield assessment using ground based low altitude remote sensing technology. Information Processing in Agriculture, 6(4), 502–514. DOI: 10.1016/j.inpa.2019.01.005.

Salvati, L. (2010). Exploring the relationship between agricultural productivity and land degradation in a dry region of Southern Europe. New Medit, 9(1), 35–40.

Shilenko, N. A., Sokolova, S. A., Anisova, S. N., Lesnikov, L. A., Lebedev, A. T. & Semionova, I. V. (1999). Perechen rybokhozyaystvennykh normativov predelno-dopustimykh kontsentratsiy (PDK) i orientirovochno bezopasnykh urovney vozdeystviya (OBUV) vrednykh veshchestv dlya vody vodnykh obektov, imeyushchikh rybokhozyaystvennoe znachenie [The List of Fishery Standards: Maximum Permissible Concentrations (MPC) and Tentatively Safe Levels of Exposure (SLE) of Harmful Substances to Water of Water Bodies of Fishery Importance]. M.: VNIRO, 304. (In Russ.)

Shiryaev, V. I. (2013). Finansovye rynki. Neyronnye seti, khaos i nelineynaya dinamika: Uchebnoe posobie [Financial Markets: Neural Networks, Chaos, and Nonlinear Dynamics]. Moscow: Librocom, 232. (In Russ.)

Vlasyuk, P. А. (1969). Biologicheskie elementy v zhiznedeyatelnosti rasteniy [Biological Elements in the Life Activity of Plants]. Kiev: Naukova dumka, 516. (In Russ.)

Zhang, C., Di, L., Lin, L. & Guo, L. (2019). Machine-learned prediction of annual crop planting in the US Corn Belt based on historical crop planting maps. Computers and Electronics in Agriculture, 166, 104989. DOI: 10.1016/j.compag.2019.104989.

Zhang, L., Ji, L., Lei, L. & Yan, D. (2010). Comparison of two regression models for predicting crop yield. In: 2010 IEEE International Geoscience and Remote Sensing Symposium (pp. 1521–1524). IEEE.

Published

30.06.2022

How to Cite

Arkhipova М. Ю. . (2022). Modelling Crop Yield in Agricultural Regions Using Computer Vision Technology. Economy of Regions, 18(2), 581–594. https://doi.org/10.17059/ekon.reg.2022-2-20

Issue

Section

Research articles