METHODOLOGY FOR SELECTING REGIONS TO STUDY THE ADAPTATION OF AGRICULTURE TO CLIMATE CHANGE
DOI:
https://doi.org/10.17059/ekon.reg.2023-2-14Keywords:
small sample, diversity, natural agricultural zones, technical efficiency, partial equilibrium, linear programming, scenario analysisAbstract
The impact of climate change on the social and institutional conditions of agriculture (as opposed to technological ones) in Russia has hardly been studied. With a limited budget, such research should examine a small sample of regions. To reduce the subjectivity, a formalised methodology for creating and ranking small samples of regions was developed. While occupying the largest possible share in the country’s gross agricultural production, the regions included in the sample should significantly differ in natural and agricultural zones, agricultural production efficiency, contribution of peasant farms to agricultural output. Unlike other methods, the proposed technique uses a linear programming problem, where all corner solutions are integer. Data envelopment analysis (DEA) was utilised to ensure the inclusion of both efficient and inefficient regions in the sample. In accordance with these requirements, Altai, Krasnoyarsk, Krasnodar krais and Moscow oblast were selected for analysis. For the regions included in at least one of the five best samples (such as Volgograd, Saratov and Leningrad oblasts), a model of partial equilibrium on the wholesale markets of agricultural products of the constituent entities of the Russian Federation (VIAPI model) was applied to assess the impact of scenario climate change on the output and wholesale prices of ten types of agricultural products. The research revealed that while the production in the selected regions is resistant to this influence, except for Altai and Krasnoyarsk krais, regional market prices are still rising due to the impact of world prices for milk products and grain.
References
Ahn, B. S. & Choi, S. H. (2008). ERP System Selection Using a Simulation-Based AHP Approach: A Case of Korean Homeshopping Company. The Journal of the Operational Research Society, 3, 322-330. DOI: https://doi.org/10.1057/palgrave.jors.2602365
Alcamo, J., Dronin, N., Endejan, M., Golubev, G. & Kirilenko, A. (2007). A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Global Environmental Change, 17, 429-444. DOI: https://doi.org/10.1016/j.gloenvcha.2006.12.006
Belton, V. (1985). The Use of a Simple Multiple-Criteria Model to Assist in Selection from a Shortlist. Journal of the Operational Research Society, 4, 265-274.
Belyaeva, M. & Bokusheva, R. (2018). Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach. Climatic Change, 149, 205-217. DOI: https://doi.org/10.1007/s10584-018-2221-3
Belyaeva, L. A. (2009). Level and quality of life. Problems of measurement and interpretation. Sotsiologicheskie issledovaniya [Sociological studies], 1, 33–42. (In Russ.)
Bobylyov, S. N., Kudryavtseva, O. V. & Solovyova, S. V. (2014). Sustainable development indicators for cities. Ekonomika regiona [Economy of Region], 3, 101–110. (In Russ.)
Charnes, A., Cooper, W. W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429-444.
Cutshall, R., Gavirneni, S. & Schultz, K. (2007). Indiana university’s Kelley school of business uses integer programming to form equitable, cohesive student teams. Interfaces, 3, 265-276. DOI: https://doi.org/10.1287/inte.1060.0248
Filipe, A. F., Marques, T. A., Seabra, S., Tiago, P., Ribeiro, F., da Costa, L. M., … Collares-Pereira, M. J. (2004). Selection of priority areas for fish conservation in Guadiana river basin, Iberian Peninsula. Conservation Biology, 18(1), 189-200.
Glickman, H. (2000). A best-choice problem with multiple selectors. Journal of Applied Probability, 3, 718-735.
Gnedin, A. V. (1994). On a best-choice problem with dependent criteria. Journal of Applied Probability, 1, 221-234.
Gordeev, A. V. (Ed.). (2012). Bioklimaticheskiy potentsial Rossii: produktivnost i ratsionalnoe razmeshchenie selskokhozyaystvennykh kultur v usloviyakh izmeneniya klimata [Bioclimatic capacity of Russia: productivity and rational allocation of crops in the conditions of climate change]. Moscow: Ministry of Agriculture of Russian Federation, 202. (In Russ.)
Intergovernmental Panel on Climate Change. (2014). Climate change 2014: impacts, adaptation and vulnerability: Сontributions of the Working Group II to the Fifth Assessment Report. Cambridge: Cambridge University Press, 944. DOI: https://doi.org/10.1017/CBO9781107415379
Kashtanov, A. N. (Ed.). (1983). Prirodno-selskokhozyaystvennoe rayonirovanie i ispolzovanie zemelnogo fonda SSSR [Natural and agricultural zoning and the use of land fund of the USSR]. Moscow: Kolos, 335. (In Russ.)
Kiselev, S., Romashkin, R., Nelson, G., Mason-D’Croz, D. & Palazzo A. (2013). Russia’s Food Security and Climate Change: Looking into the Future. Economics, 7(1), 20130039. DOI: https://doi.org/10.5018/economics-ejournal.ja.2013-39
Kiselev, S., Strokov, A. & Belugin, A. (2016). Projections of Russia’s agricultural development under the conditions of climate change. Studies on Russian Economic Development, 5, 548-556. DOI: https://doi.org/10.1134/S1075700716050063
Krasnopolskaya, I., Skokova, Y. & Pape, U. (2015). Government-nonprofit relations in Russia’s regions: an exploratory analysis. Voluntas: International Journal of Voluntary and Nonprofit Organizations, 6, 2238-2266.
Linos, K. (2015). How to select and develop international law case studies: lessons from comparative law and comparative politics. American Journal of International Law, 3, 475-485. DOI: https://doi.org/10.5305/amerjintelaw.109.3.0475
Lu L., Anderson-Cook, С. M. & Robinson, Т. J. (2011). Optimization of designed experiments based on multiple criteria utilizing a Pareto frontier. Technometrics, 53(4), 353-365. DOI: https://doi.org/10.1198/TECH.2011.10087
Mahar, S., Winston, W. & Wright, P. D. (2013). Eli Lilly and Company uses integer programming to form volunteer teams in impoverished countries. Interfaces, 3, 268-284. DOI: https://doi.org/10.1287/inte.2013.0679
McBride, R. D. & Zufryden, F. S. (1988). An integer programming approach to the optimal product line selection problem. Marketing Science, 2, 126-140.
Pavlova, V., Varcheva, S., Bokusheva, R. & Calanca, P. (2014). Modelling the effects of climate variability on spring wheat productivity in the steppe zone of Russia and Kazakhstan. Ecological Modelling, 277, 57-67. DOI: https://doi.org/10.1016/j.ecolmodel.2014.01.014
Porfiryev, B. N., Kattsov, V. M. & Roginko, S. A. (2011). Izmeneniya klimata i mezhdunarodnaya bezopasnost [Climate change and international security]. Moscow: D’ART, 292 (In Russ.)
Romanenko, I. A., Siptits, S. O. & Evdokimova, N. E. (2020). Agroprodovolstvennaya strategiya regionov v usloviyakh neopredelyonnosti budushchego klimata [Agro-industrial strategy of regions under the conditions of climate uncertainty in the future]. VIAPI n.a. A. A. Nikonov, Ser. 53. Moscow: Analyst, 204. (In Russ.)
Samuels, S. M. & Chotlos, B. (1986). A Multiple Criteria Optimal Selection Problem. In: Adaptive Statistical Procedures and Related Topics (pp. 62-78). Hayward: Institute of Mathematical Statistics.
Shagaida, N. I. & Uzun, V. Ya. (2015). Food security: problems of assessing. Voprosy ekonomiki, 5, 63–78. (In Russ.)
Siptits, S. O., Romanenko, I. A. & Evdokimova, N. E. (2021). Model Estimates of Climate Impact on Grain and Leguminous Crops Yield in the Regions of Russia. Studies on Russian economic development, 32, 169-176. DOI: https://doi.org/10.1134/S1075700721020106
Strokov, A. S. (2021). Emission of greenhouse gases during crop production. Vestnik Rossiyskoy Akademii Nauk [Herald of the Russian Academy of Sciences], 3, 265–272. (In Russ.)
Strokov, A. S., Ternovsky, D. S., Potashnikov, V. Yu. & Potapova, A. A. (2020). Economical evaluation of externalities using partial equilibrium model. Zhurnal Novoy Ekonomicheskoy Assotsiatsii [Journal of the New Economic Association], 4, 113–137. (In Russ.)
Svetlov, N. M. (2020). How to improve the planning of the federal project “export of agricultural products”. APK: ekonomika, upravlenie [AIC: economics, management], 10, 41–50. (In Russ.)
Svetlov, N. M. (2021). Estimation of climatic influence on balances of agricultural products. Ekonomika selskokhozyaystvennykh i pererabatyvayushchikh predpriyatiy [Economy of agricultural and processing enterprises], 10, 10–18. (In Russ.)
Svetlov, N. M., Siptits, S. O., Romanenko, I. A. & Evdokimova, N. E. (2019). The effect of climate change on the location of branches of agriculture in Russia. Studies on Russian economic development, 30, 406-418. DOI: https://doi.org/10.1134/S1075700719040154
Svetlov, N. M., Yanbykh, R. G. & Loginova, D. A. (2019). On the diversity of the effects of the state support for agriculture. Voprosy ekonomiki, 4, 59–73. (In Russ.)
Wallenius, J., Fishburn, P. C., Zionts, S., Dyer, J. S., Steuer, R. E. & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: recent accomplishments and what lies ahead. Management Science, 7, 1336-1349. DOI: https://doi.org/10.1287/mnsc.1070.0838
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Матушкина Наталья

This work is licensed under a Creative Commons Attribution 4.0 International License.

